skip to main content


Search for: All records

Creators/Authors contains: "Field, Paul R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The change in planetary albedo due to aerosol−cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth’s climate sensitivity to increased greenhouse gases from the historical record. The variable that controls aerosol−cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm −3 and 24 cm −3 . By extension, the radiative forcing since 1850 from aerosol−cloud interactions is constrained to be −1.2 W⋅m −2 to −0.6 W⋅m −2 . The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol−cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models. 
    more » « less
  2. Hail and graupel are linked to lightning production and are important components of cloud evolution. Hail can also cause significant damage when it precipitates to the surface. The accurate prediction of the amount and location of hail and graupel and the effects on the other hydrometeor species depends upon the size distribution assumed. Here, we use ~310 km of in situ observations from flights of the South Dakota School of Mines and Technology T-28 storm-penetrating aircraft to constrain the representation of the particle size distribution (PSD) of hail. The maximum ~1-km hail water content encountered was 9 g m−3. Optical probe PSD measurements are normalized using two-moment normalization relations to obtain an underlying exponential shape. By linking the two normalizing moments through a power law, a parameterization of the hail PSD is provided based on the hail water content only. Preliminary numerical weather simulations indicate that the new parameterization produces increased radar reflectivity relative to commonly used PSD representations.

     
    more » « less
  3. Model output from "A model intercomparison of CCN-limited tenuous clouds in the high Arctic", accepted for publication in Atmospheric Chemistry and Physics, 2018, same authors. The intercomparison includes output from three large-eddy simulation models (UCLALES-SALSA, MIMICA, and COSMO-LES) and three numerical weather prediction models (COSMO-NWP, WRF, and UM-CASIM) for a case study of high-Arctic tenuous cloud based on observations from the 2008 Arctic Summer Cloud Ocean Study (ASCOS) campaign. See publication for details. The discussion preprint for peer review can be found at https://doi.org/10.5194/acp-2017-1128.

     
    more » « less